NBTI in GaN MOSFETs: SiO₂ vs. SiO₂/Al₂O₃ gate dielectric

Alex Guo and Jesús A. del Alamo Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT) Cambridge, MA, USA

Sponsor: MIT/MTL Gallium Nitride (GaN) Energy Initiative

United States National Defense Science & Engineering Graduate Fellowship (NDSEG)

Outline

- Motivation
- Experimental setup
- Results and discussion
- Conclusions

Outline

Motivation

- Experimental setup
- Results and discussion
- Conclusions

GaN for power electronics

Promising for a wide range of applications

- Negative-Bias Temperature Instability (NBTI) is a major concern:
 - Operational instability
 - Long-term reliability

GaN MIS-HEMT for high voltage applications

<u>MIS</u>-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor

- ✓ Low gate leakage, large gate swing
- x Gate oxide brings stability and reliability concerns not present in HEMTs

This work: simpler GaN MOSFET structure

Industrial prototype devices

- Isolate oxide and oxide/GaN interface
- SiO₂ vs. SiO₂/Al₂O₃ composite, EOT ~ 40 nm

NBTI of GaN MOSFETs

Three regimes:

- (Regime 1) Small negative $\Delta V_T \rightarrow$ (regime 2) positive $\Delta V_T \rightarrow$ (regime 3) negative ΔV_T
- Permanent negative ΔV_T after TD

NBTI of GaN MOSFETs

- Differences from NBTI of Si HKMG p-MOSFET:
- Larger |∆V_T|
- Peculiar positive V_T shift in regime 2

NBTI of GaN MOSFETs

Goal of this work: <u>NBTI in SiO₂ vs. SiO₂/AI₂O₃ GaN MOSFETs</u>

Outline

Motivation

- Experimental setup
- Results and discussion
- Conclusions

Experimental flow and FOM definition

Increase stress voltage or T

- V_T : V_{GS} value when $I_D = 1 \mu A/mm$
- S: Extracted at $I_D = 0.1 \ \mu\text{A/mm}$
- g_{m,max}: Extracted from I_D-V_{GS} ramp
- All at V_{DS} = 0.1 V
- First sample: ~ 1- 2 s after removal of stress

- Motivation
- Experimental setup
- Results and discussion
- Conclusions

Stress time (t_{stress}) evolution of ΔV_T at RT

V_{GS,stress} = -2 V (low-stress)

- SiO₂: No visible negative ΔV_T; Positive ΔV_T and ΔS for longer t_{stress}; → no regime 1 observed
 SiO₂/Al₂O₃: Negative ΔV_T, negligible ΔS → regime 1
- Both devices completely recovered after TD

 \rightarrow Lower level of oxide trapping/detrapping in SiO₂ vs. SiO₂/Al₂O₃

Stress time (t_{stress}) evolution of ΔV_T at RT

V_{GS,stress} = -10, -20, -30 V (mid-stress)

- Positive ΔV_T , both increase with t_{stress} and $V_{GS,stress} \rightarrow$ regime 2
- SiO₂/Al₂O₃ device completely recovers after TD \rightarrow regime 2 only
- SiO₂ device shows negative, permanent ΔV_T that increases with $V_{GS,stress} \rightarrow$ regime 2 + 3

Stress time (t_{stress}) evolution of ΔS at RT

V_{GS,stress} = -10, -20, -30 V (mid-stress)

- Positive Δ S increases with t_{stress} and V_{GS,stress} \rightarrow regime 2
- SiO₂/Al₂O₃ device completely recovers after TD \rightarrow regime 2 only
- SiO₂ device shows non-recoverable Δ S that increases with V_{GS,stress} \rightarrow regime 2 + 3

Correlation of ΔV_T and ΔS

• ΔV_T and ΔS correlation after 1000 s stress

Regime 2:

- Recoverable ΔV_T vs. recoverable ΔS linearly correlate
- Suggests same mechanisms

Regime 3:

- Permanent ΔV_T and permeant ΔS linearly correlate
- Suggests same mechanisms

ΔV_T mechanism (regime 1)

ΔV_T mechanism (regime 1)

- More prominent electron detrapping in SiO₂/Al₂O₃ devices than in SiO₂ devices
 - → Border traps in Al₂O₃, well studied in Si HK system [Jakschik, TED 2004]
 - → Consistent with PBTI study [Guo, IRPS 2015]

ΔV_T mechanism (regime 2)

ΔV_T mechanism (regime 2)

 ΔV_T and ΔS evolution in regime 2 independent of dielectric → consistent with trapping in GaN substrate - more substrate traps in SiO₂ device perhaps due to higher deposition temperature.

ΔV_T mechanism (regime 3)

 Interface state generation under high gate stress, well-studied mechanism in Si MOS system [Schroder, JAP 2007].

ΔV_T mechanism (regime 3)

- Interface state generation under high gate stress, well-studied mechanism in Si MOS system [Schroder, JAP 2007].
- More severe in SiO₂/GaN interface, consistent with PBTI study [Guo, IRPS 2015]

Outline

- Motivation
- Experimental setup
- Results and discussion
- Conclusions

- Understanding of NBTI in SiO₂ vs. SiO₂/Al₂O₃ GaN MOSFETs
 - Regime 1 (low-stress):
 - » Electron detrapping from pre-existing oxide traps
 - » More prominent in SiO_2/AI_2O_3 due to higher concentration of border traps
 - Regime 2 (mid-stress):
 - » Trapping in GaN substrate
 - » <u>Greater magnitude in SiO₂ devices, possibly due to defects created during SiO₂</u> <u>deposition</u>
 - Regime 3 (high-stress):
 - » Interface state generation at oxide/GaN interface
 - » <u>SiO₂ devices exhibit more fragile interface with GaN (more interface state generation)</u>